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ABSTRACT

The ratio estimator can be justified by a linear superpopulation model

.without intercept and the error variance proportional to the size of the

covariate. If either of the assumptions is violated, then other estimators

may be considered. We study the consistency of several estimators which are

based on different assumptions about variance structure of the error. Some

decompositions of the finite population are introduced. Roughly speaking, we

0 fit a weighted regression line to the finite population with the weight chosen

according to the estimator under consideration. We show that any estimators

in that class, except the ratio estimator, are inconsistent unless some

conditions on the population's characteristics are satisfied. Based on the

decomposition, modifications can be made to get a consistent estimator. For

the case of p-auxiliary variables, we characterize the class of consistent

weighted least squares estimators. The result is extended to the infinite

population problem using a completely different approach.f
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SIGNIFICANCE AND EXPLANATION

In estimating the population mean of a character of interest, we often

make use of an auxiliary covariate which is already available. Ratio

estimator is one of the commonly used estimators in survey sampling. The

ratio estimator can be justified by a linear superpopulation model with

certain error structure assumptions. If some of the assumptions are violated,

then other estimators may be considered. We study the consistency of several

estimators which are based on different assumptions about variance structure

of the error. Some decompositions of the finite population are introduced.

We show that the ratio estimator is the only consistent estimator in the

class. Based on the decomposition, modifications for other estimators can be

made to be consistent estimators. For the case of p-auxiliary variables, we

show how to choose the right weight for the weighted regression estimators to

be consistent. The result is extended to the infinite population situation.
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CHARACTERIZATION OF THE CONSISTENT WEIGHTED REGRESSION ESTIMATORS

Lih-Yuan Deng

1. Introduction

Considr, a finite population consisting of N units with values ( yi, xi), where xi

is positive and known for 1 < i < N. A simple random sample of 'ize n is chosen

without replacement from the population. Denote the sample - opulation means

of y and x by y, Y and Y, X respectively. The ratio estimator

is the most commonly used estimator of Y. It is the best linear unbiased predictor of

Y under the following superpopulation model ( Brewer, 1963; Royall, 1970)

yi= xi+ Ej (1.1)

EM(qi)=0 ; EM(qrj) =  W ifij

with wi = xi, where EM denotes expectation with respect to the superpopulation

, model (1.1).

If the variance of ei is not proportional to xi, one may consider the best linear

unbiased estimator (BLUE) of Y

: 'n x i Yi

.4'.

Yw 2 =(1.2)" n Xi2

1wi

where [ is the weighted least square estimator of 3 in (1.1). In particular, for wi=

* Assistant Professor, Department of Mathematical Sciences, Memphis State

University, Memphis, TN. 38152.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1, we have

" " Xi Yi

C T1 2i y (1.3)

* ix

For wi = x, we have YR. For wi= xjz, we have

I n Yi
Yhn i=1 xi

Royall(1970) took a different approach to the estimating problem for Y. He

showed that

y =f Y+ (1-f) w r (1.5)

.: -is the best linear unbiased predictor (in contrast to estimator) of Y under superpo-

pulation model (1.1), where f = n/N is the sampling fraction, and

xr =(N X -n x)/(N -n).

It is easy to see the difference between the two is

~Y- Yw =f( Y- [ w -). (1.6)

From (1.6) one can easily see that

Y- y -40 as n -- + -.

0 j either model (1.1) is true or f -- + 0 as n -- + oo. In practice, the sampling fraction is
/.,.

indeed very small. In either case, this implies y and Yw are asymptotically

; equivalent. The same remark can be applied for Y. and Yh

It is well-known that YR is a consistent estimator of Y. We will first study the

j,  asymptotic properties of Y,, Yh in Sections 1 and 2. More general results for Yw

-2.W



are obtained in Section 3. In fact, we can show that YR( wi = xi) is the only con-

sistent estimator of Y among Yw . We also show that Yc , Yh can be consistent esti-

mators of Y, provided that some conditions on the population characteristics are

satisfied. Based on these , we can easily modify Yc, Yh to get consistent estimators

of Y. A useful decomposition of the finite population is developed. In Section 3, we

extend the results in Section 2 to the case of p-dimensional auxiliary variables. Lastly,

similar properties can be found for the case of infinite population in Section 4. The

techniques used are quite different from those in the previous sections.

The asymptotic behavior of an estimator will be studied under the traditional ran-

* domization distribution generated by repeated sampling form a fixed population

according to simple random sampling (s.r.s). Following the usual formulation of

asymptotic theory in finite population (see for example, Scott and Wu, 1981; Isaki and

FuUer, 1982 ), we embed our finite population in a sequence of populations { U, }

indexed by v with population size N, and a a simple random sample of size n.,

where 0 < N, < N2 < .... and UIc U2CU3 .• •. Let a sequence of samples { s, }

of size { nj be created from the sequence of populations { Uj by a sequence of

designs, where nj < n2 < .... and n. < Nv for all v. Note that while the sequence of

populations is nested, the sequence of samples is not.

Let the population Uv consist of N units with values { (yi, xi) , i=l,..., Nv }.

0 The population mean X. of the auxiliary variates is assumed known. Y. denotes the

population mean of the character under study. Let 1, Yv denote the sample means of
.'

x and y based on a s.r.s. without replacement (srswo ) of size nv drawn from popu-

.3.
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lation U,.

For a general sampling scheme, Isaki and Fuller(1983) gave a sufficient condi-

tions for the Horvitz-Thompson estimator to be consistent. For the simple random

sampling, Lemma 1.1 below is a corollary of Lemma 1 of Isaki and Fuller(1983).

Lemma 1.1. Let { zi} be a fixed sequence, and satisfies the condition
1 N, -

- (z " - < M < - for all v. (1.5)Ni=l

Then

n% i__
in.1 , 1 N, (.6i'T,-'v Z,,= O( n, ") where I,= -nv an i-~ ~. (16

Throughout this paper, we will assume that for any "reasonable" function g

Zi = g( xi, yi" wi) will satisfy condition (1.5).

2. Asymptotic Behavior of y, Yh and Yw

2.1. Asymptotic Behavior of y7
We can fit the regression line to the finite population { (yi, xi),i=l,2,.., Nv }

j ," Yi xc,v +  P c,v xi +  di, (2.1)

. -where

N, -

- XV)( Y1 - Y)

[o JV = N, (2.2)V. Z( xi- X,)2
xi=1

and

.'.4.
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rL' C.. 7 V,+ P- C,V R V , (2 .3 )
.".d = Yi" at,v- c,v xi (2.4)

It is straightforward to see I dj I satisfy the following

N, N,
"- di = 0 , xi = 0 (2.5)
i=1 i=1

We can use the decomposition in (2.1) to characterize the asymptotic behavior of

xi Yi

Yc,v = (2.6)
c-' . - X i2

i=1

Theorem 2.1.

- S2

(a) Yc,v - Yv = O,[ - ]2) + Op( nv-°).
RV

(b)y c,v - Yv + 0, if lim a,v=0,
V--

where

2 - N, 1 N,

X,V N-1VN*
¢:'"x'v=Nv -1~l(xi" Xv) 2 ,v(2 N xi.

Proof. Using (2.1) and (2.6), we have

r! , . I ixi di

xv1 ni.- v -- v ~t dn

Yc,v ac,V -(2) XV + v X + X(2 where -
T V 'v i=V

This together with Yv =oc,v + C, Xv , implies

., -- xi di

v V [i= d (2.7)1,.- Y ,v -]+ -- Xv.
12)) TV.

Dv -0.5xv _ RVFrom (2.7), xi di = Op(n ). and v - + Op( nV) we
fly j=1 n T(2 ) v(2)

,;.,: .,'- :.. , .,. . .- . .. .. .< .,. .,.; -. -:. . . , . . . , , . . .,2, . .: ?,,- .



have Part(a). Part(b) follows from Part(a) and xV 5 1 0

From Part(a) of Theorem 1, the leading term of Y,, - Yv depends only on the

-" sign of a, v, the intercept of the regression line. If ac,v > 0 (< 0 ), then Y, has a

positive ( negative ) bias of constant order. If t,,v -- 0 as v ---4 0, then Yv is a

consistent estimator of Y. In practice, oct,v is of course unknown. However, we can

estimate a,, consistently by using the sample analog ac,v of ac,v in (2.1). It is easy

to modify yc,v to get a consistent estimator of Y. For example,

'4,: S2 S 25
Ycv +  Cv (2) and Yc, + c,v are consistent estimators of Y,, v iiere

-. V +v(2)

Ssx2 v are the sample analogs of 2 X,(2)

A- 2.2. Asymptotic Behavior of yhv

-~ We need a different decomposition of the population for studying the asymptotic

behavior of

= 1( ) Xv. (2.8)
nv i= Xi

Fit a weighted regression line with weight proportional to x -
1 to the finite population

Uv

Y= ah,V + IPh,v Xi + di, (2.9)

where

6 -
°.%- .

.0- °
- A ,.-. . . . . . . . - A A.-.

[ A . . . . A*
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N,.

X- v(- 1) -

Ig~ = X v v -1 -1 2-1N, V V

V V

di= Yi hh.V Ph,v Xi

Note that { di } satisfy the following

N. Nd
di= 0 , 0 . (2.12)

i=1 i-l i

Using the above decomposition, we can find the leading term of Yh,v -Yv.

Theorem 2.2.

(a) Yh,v - R= Vh[ Xv X (-1) - 11 + Op( nv

(b)If lim Xv(-1) < othen Yh,v -V -+ 0, if h,v --- O as v -- oo

where X(- 1) - N1 i 1

";' Proof. From (2.8) and (2.9), we have

Yhv aXhv X X + ,V V+
f." = 1 i-I Xi

This together with Yv = Xh,v + ihv X, implies

1 d.
Yh,v v = IXh,v( X(-1) X -" 1) + - '' X .

fl i=1 Xj
Part(a) follows from the above expression and v(- ) = X (-I) + Op(n. -5),S

p'S. ___ - O,( nV--5) . Part(b) follows immediately from Part(a). 0
. -n. Xi

o 
.. . .
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From the Jensen's inequality, we can see that X, X,,-' - 1 > 0. Therefore, the

sign of the leading term of Yhv depends only on och,, the intercept of the

weighted regression line. If (ah,v >0 (<0 ), then Yhv has negative ( positive ) bias of

constant order. Theorem 2.2 not only gives a condition for Yh,v to be consistent but

also indicates how to modify yhv to get consistent estimators of Y.

2.3. Asymptotic Behavior of yw.v

To study the asymptotic behavior of

n, xi Y

i= i
Y - * Xv, (2.13)

i= l W i ..

we need the following decomposition of the finite population

yi= aw,v Wi + Ow,v xi + di, (2.14)

where d, satisfy the following

N, N, xi d,
d= 0 0. (2.15)

i=l i= Wi

Note that if the vector of { wi} and the vector of { xi} are linearly independent, then

Sw,V, Pw, v will be uniquely determined under ccndition (2.15). We can obtain

ot,,v, Pw,v by fitting the weighted least square line as in (2.14), with the weight pro-

portional to wi. Using the above decomposition we can show the following theorem:

.-

,'.0 ---.-. , - - , - - -. . ; .-. ,'-, -- . . , - ' . - - - . " - , - - . -
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Theorem 2.3. If az~v, 3,,, can be uniquely determined in (2.14), then

(a) Y,, - , - - WV] + 0,(, .')N,, ?w~

i=1

&2
(b)[ - W ] :5 0, for all Nv.

N, 
2

NV1  xi2 -1

(c) If lrn Wv < -andO0< lim, 1 NXj2 Wj <@00,

then Yw,v - Yv --+ 0, if ct,- 0 as v-
1 N,

where WV - N w i.V l

Proof. From (2.13) and (2.14), we have

n -1 w - 1 xi di
TV V 1 -

YW.V W.V . + IWP.,VX+
V wi -1 X2  V 1  w 1 2

i7-1

From this and YV= aw,v W v + 3w,v XV, we have

n,
v -1  wi- 1 x i di

Yw., - ' = G.w,V[ X. XV,.+ =
nv1  wi '-1 xi2  nv - Z w ' 1 x2

VV Lv"

i=1 i=l

Part(a) follows from the above expression and

1 OP( n.i

Part(b) follows from the Cauchy-Schwartz inequality. Part(c) follows immediately

from Part(a). 0

.9.
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From Theorem 2.3, we can see that the leading term of Yw, - Yv depends only

on o.w,, the "intercept" of the regression "line" in (2.14). Moreover, If a.v > 0 ( < 0

),then Yw,v has negative (positive ) bias of constant order. Theorems 2.1 and 2.2

are special cases of Theorem 2.3 with wi = 1 and w, = x1
2. However, Theorems 2.1

and 2.2 give the explicit formulae for the leading term bias of y, and Yh in terms of

the usual regression decomposition of the population.

3. p-dimensional Auxiliary Variables

In Section 2, we assume that only one auxiliary variable (x) is available. Estima-

tors like Yw,v = w,v Xv are justified by the superpopulation model (1.1). The

regression estimator is another popular estimator of Yv. It is the best linear unbiased

predictor under the following superpopulation model (Royall, 1970)

Yi = a + P xi + Ci (3.1)

r i f i*j

with wi =.

If the constant variance assumption is in question, one may like to consider an estima-

tor of Yv which is based on the weighted least estimator of aO with some weight wi.

As we have seen in Section 2, not all kinds of weight will give us consistent estima-

. tors. As a matter of fact, in Section 2 the only weight we may choose such that Ywv

is consistent is wi - xi.We may ask the same question for the weighted regression

0 estimators. More generally, for more than one auxiliary variates, the commonly used

K%

.. 10
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estimator is the multiple regression estimator. We may again consider L weighted least

square estimator for p-auxiliary variables. We would like to know what kind of weight

will result in a consistent estimator. If the weight does not give consistent estimator for

ootall populations, we would like to characterize the leading term of the bias in terms of

i some simple population characteristics so that we may modify the estimator to get a

consistent estimator. We would like to extend the results in Section 2 to the case of

several auxiliary variables. Some notations will be introduced.
..

Consider a finite population Uv indexed by v with population size N, and a sim-

ple random sample (s.r.s.) with size nv. Let X1,X2,..,X p be the p-auxiliary variates

which are correlated with character Y. The purpose is again to estimate Yv, the popu-
I

lation mean of the variable of interest. Under simple random sampling, a sample
m-.7

(ys,, Xs) of size nv is chosen, where YS, = (Yil ,y," ,yi ),

Xs= (X., X. ,""",i j X =(XlAii , " ,pi)'.

Consider a general class of weighted least square estimators

yw0v = X( X1,' W -1 X X5 ' W - Ys, = Xv f3. (3.2)

where

1 N,

W, =diag(wil,w 2 ,.w), Xv - NiX

* and wi > 0 is the weight associated with unit i.

V Note that ratio estimator is a special case of (3.2), with p=l, wi = xi, and the

iegression estimator estimator is also a special case of (3.2), with p=2, wi  1, and the

first column of X matrix is all I 's and the second col mn is Xi's.

%1
• 4 l
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.. An important question one may ask is that what kind of weight W i we can

choose such that yw,v will be a consistent estimator for Yv ? If Y.,, is not con-

* sistent we would like to find the leading term of Yw,v - Yv in terms of some simple

population characteristics. Hence, one can modify Ywv to get a consistent estimator

of Vv.

To characterize the asymptotic behavior of Yw,v we need the following decom-

position of the finite population Uv
-~• t

yv - x v +4 yv, + dv (3.3)

where

Zv = (w1 ,w2,'".,w N,)', Wv = diag(w1 ,w2,...,w N,) (3.4)

and

Y" (YlY2,***'Y , N) = (dld 2,'".,d N)'

SX P -2 - Y N, Xi = (X li X 2i' "" X

Note that Ov and yv will be uniquely determined, if 4 is not in the column space

of Xv  the dimension of the column space of Xv is p , and

Xv' Wv - dv =0 (3.5)

and

N,
Zv 'W v -ldv =lN,'4 = di =0. (3.6)

i=l

Here is our key Theorem.

-12-
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- Theorem 3.1. Assume that ( Xv 'Wv -1 Xv) is non-singular, for all v.

(a) IflN, e col ( W, - Xv), then

. YwV - Y (7Y,- Y)-(X,- X,)w.,+ Op(n- 1)

where I N, = (1, 1,.., 1)'. Yw , is then obviously a consistent estimator of YV.

-(b) IflIN. 4 Col( vI- x v ) ,th en

-Y,., v = x, w -' x,) x' - Wj] y, + Op( n-0). (3.7)

V

where

R" [ N( XV, WV-1 X,) Xv' - W] < 0, for all v. (3.8)

Y.v Y- - f-+ T --0oaiv --0 -.

Proof. Note that

IThe assumption of Part(a) implies '=c XSW,' WS,- for some c( from which, we

ii , have

=K --I C ' SW - Ys. =V Y (3.10)
• nv

Note that

(X ' W -,) - (xv' W.-, x.) + OQ( --0 5) (3.11)
n. v 5 Nv

and

-



V -r~~ 0'rr -wx- -la, ~ ~ rz.p.w~ -W W - .. r

3V. I = y( n1

Since( Xv  v - Xv ) is assumed non-singular for all v
1-1 [ -1

[L ( xJI w x) X I ( x, , - 1 x, + Op( n -. - . ,n v  N v

which implies

,= P,. + Op( n -). (3.12)

Part(a) follows from (3.10) and (3.12). To prove Part(b), we will use the decomposi-

tion (3.3). Note that 1 N, col( Wv -
1 Xv ) implies Zv = Wv 1 N, col( Xv).

Therefore, the coefficients J3v , yv in the decomposition (3.3) will be uniquely deter-

mined. Using (3.2),(3.3) and W., 1 Z = I n,, we have

1W -1 -
Yw., R= Xv + Rv( xd w, - 5x,.) - n, K, Y,

+ xV( X,' w, - ( x 5, W1 X,) flw,- dX,

From (3.3) and (3.6), it is straightforward to see

V V= RVIP+ Zy v +0= x-- + WV v

'V Taking the difference, we get

YV - Y x= [ X(-L x , ' wS S S IV - Wi , 7-

0+ 8v(
- L  Xs, WSW-' Xs.) ( Xs,' Ws,- 1 ds,) (3.13): :nv nV

Using (3.11) and

"-- 1 X '

X3 8, 0 1  , - N V Xv WV dv + Op( n 5 )- Op(n" 5 ),

it is easy to see last term of (3.13) is Op( nv"- 5). (3.7) follows from (3.13) and 1 v -

v= Op(n-- 5 ). And (3.8) holds because

.14.
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. ..... I

• -1

N l I N,'(Wv . Xv(XvWv 1 Xv 1 Xv ')I N,

- 1 [c'( I - M(M'M)-IM') c] O,

where M =W v -1'2 Xv ' c - Wv i21 N, and I - M(M'M)-IM' is a positive semi-

definite matrix. 0

'V. Wright(1983) considered a class of asymptotically design-unbiased (ADU) predic-

tors under a general sampling design, our conclusion in Part(a) is the same as his

Theorem 1. However, Part(b) of our Theorem 3.1 uses some simple population charac-

teristics to characterize the leading term of Yw,v - Yv when I N, is not in the column

space of Wv -1 Xv . From Part(b), we can then easily construct some new consistent

estimators of Y.. For example, let 'Yv be the sample analog of yv, then yw,v-IIi' Rv[(_ 1  XvP WV -1 X, ) Xv - Wv] yv is a consistent estimator of Yv.

4. Characterization of a Class of Consistent Estimators in Infinite Population

To characterize a class of consistent estimators for infinite populations, the tech-

niques used in Section 2 for finite population are not appropriate. A completely

different approach will be taken. The asymptotic framework for the infinite population

is the standard one. Therefore, the notation is simpler.

* Let ( Yi, X ) be an i.i.d random vectors with distribution F(Y, X), i=1,2, .. n,

where Yi is the variable of interest and X is a p-dimensional variables. The joint

S distribution F of Y and X need not to be known. The main purpose is to use both X

' - 15-
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and Y to estimate E(Y) = y, where E denotes the expectation.

Consider a class of estimators

,= ), '(A'V-A) -AV-Y g , (4.1)
- x - - x - W

where g is any consistent estimator of E( X), i.e.
-x

I = E (X ) + O ()
-xo(l

* ' a n d

= (A'V 'A) -'A 'VY , Y = (Yi, " ,Y )',
W

' A n p ( X I X , " " n X ) ' X-- ( Z l i ,  Z I , . , p i) '  ""- - -2-n i 
. -

V =diag( W 1, W2,.., Wn ), Wi  g( X )for some function g.%

Note that the estimator in (4.1) is appropriate, if

Y= Xi' J+ l, (4.2)

where e are i.i.d. with mean zero and finite variance. Since I is the weighted least.. ; 
-w-.

estimator of (3, it can be shown that 1 is a consistent estimator of (3 under (4.2),
-W

for any choice of weight Wi. However, if (4.2) is not the true model, say there

* should be a Z variable in the model
.ij

Y= X' P+ Z 7+ E, (4.3)

• then 3 will not be consistent for ( under (4.3) unless X and Z are "orthogonal".
"w

But gy will still be a consistent estimator for E (Y) even if (4.2) is not the true

@ model provided we choose the "right" weight Wi. It is our purpose in this section to

.16-
-16-1"
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characterize the weight Wi such that A. will be consistent for estimating E (Y).

In the context of survey sampling, the X variable is called the auxiliary variable.

Hence, usually the marginal distribution of X is known, or E ( X ) is available. In

that case, we may choose gt = E (X ), and the estimator in (4.1) becomes

gy =E (X )'(A'V-'A) -'A'V-IY , "

which is similar to Ywv in Section 3.

Let X (ZI, Z2,.., Z_)' where Z1 , the first component of X, has the same distri-

bution as Zli'S, and Z2 has the same distribution as Z2i's, ... etc. Let

W = g( X) = g((ZI, Z2,.., Zp)') be a real random variable. Wi's are i.i.d. with the same

distribution as W.

We will impose some mild conditions on the random variables Z 's, W and Y.

(AO) g = E(X) + o(l),-X

(Al) E(I I) <cc, for all ij=l,2,..,p,
W

(A2) E(I-- I) < cc, for all j=1,2,..,p,

(A3) E( ) -E(W- 1 X' X) is a non-singular matrix.
.

Before stating our key Theorem, let us derive some properties of Py based on

these assumptions.

I

4 .17-
Iq
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From (AI) and the Weak Law of Large Numbers,

(AV.A) W -1 X 'X E(W- I X ' X ) +  o(l)n n nil ~i~~~

Using this and assumption (A3), it is easy to see

(n (A'V-A)) = [E(W-1 X' X)] - I + op(l). (4.4)
n

From (A2) and the Weak Law of Large Numbers,

1 AV y 1 W._ X. '+Y- (). (4.5) 
n -. n 1 .1"

Combining (AO), (4.4) and (4.5), we have

-.1 'y 13 = [ E ( X ) + op(1)]' [(- 1 (AVIA) AV 1 y )]
-W n n -3

= E (X ) '[E(W - 1 X' X)] -1 E(W-1 X'Y) + op(l) (4.6)

Now we are ready to state our key result.

Theorem 4.1. If assumptions (AO)-(A3) hold, then

" py = tx(AV-'A) -'A'V-'Y p ' - E (Y )

* if and only if

W = c Zj for some cj's.
S. j=1

4

Proof. (i) Sufficiency: From (4.6)

y = E (X ) 'E(W- X' X)-IE(W-1 X"Y) + op(l)

, E ( X ) '[E(W X' X) - C- 1] [C E(W-1 X'Y)I+ op(l) , (4.7)

where C is any non-singular matrix with the first row equal to (C 1, C2,... Cp). Note

that

,,.'-" '- 18.-
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E"W1 X'Y)= ca c E(W -1 Z IY) E(Y).')
C1 C2 JP E (Y)IE( W- '7,2Y)(,. -""

C E(W1E X(Y)WJ "E(w- 1 zpY) "-

and

E(Z 1 )E(Z 2) E( 7)

E( W-1 X' X)-'C - ' [C E( W-1 X' X)] -1 = (4.9)

which will be denoted by B- 1. From (4.7)-(4.9), we get

y= [E(ZI),E(Z2 ),..,E(Zp)] B-  ] + o()-

E (Y)
(1,0,0,..,0) + o(l) E( Y) + op(l). (4.10)

Therefore, we proved

- p~~y- E(Y) --40. -..,

Note (4.10) is true, because

[E( ZI),E( Z2),..,E( Zp)] = (1,0,0,..,0) B .

P

(ii) Necessity: Assume that as n --- o -.-. E (Y) . From (4.6), we know that

g- E (X ) '(E( W-1 X' X))-E( W-X'Y),

Hence

" E (Y )=[E (X )'(E( W-' X' X))-]IE( w-i'y):"

EW-1 Z1Y)

= (di,d2,",dp) E( W 1  Y) = E( W =I dj ZjY) ,

4 IE( W 1 ZpY)

.. l.?

. . . . . . . . .* - 19 -- "
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where (d 1 , d2,.., dp) = E (X ) '[E( W -' X' X)] -1 . Therefore

E([i W-1  2; Z- 11 Y) =0, for any Y,
j=1

which implies

-  W- dj Zj= 1 with probability 1.

Hence,

W 7,-

j=1

This completes the proof of Theorem 4.1. El

As we can see from the proof of Theorem 4.1, the i.i.d, assumption for (Xi, Y

)} is not necessary. All we need is formula (4.6) which is implied by (4.4) and (4.5).

Note that (4.4) and (4.5) hold for simple random sampling without replacement.

Hence, Theorem 4.1 is an extension of Theorem 3.1. One possible application of

Theorem 4.1 would be in the missing data problem. Suppose that some of the X-

components among the sample are missing, and other data may have only X-

component with y missing. In this case, g may be chosen as a component-wise aver-

age of X in the sample.

4.20-
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